
U syst

G etter

e7

Regietered by Australia Poet Publication No. NBG6524

| II

The Australian UNIX* systems User Group Newsletter

Volume 7 Number 4-5

February 1987

CONTENTS

AUUG General Information 3

Editorial 4

The Claytons UNIX Programmer 6

Network Addressing 13

Small Computers and UNIX 22

Benchmarking Visual Editors 28

Towards a standard programming interface between Graphics Programs and Graphics
Devices 30

A cursory view of the state of UNIX on the MV/20001 a Data General Computer32

Maintaining Geographically Scattered UNIX systems34

Preface to C++ Overview Paper 39

An Overview of C++ 41

Document Production in the UNIX environment 56

Documentor’s Workbench on a PostScript Device 71

From the EUUG Newsletter Volume 6 Number 2 89

The Unix Hierarchy 90

RFS Architectual Overview 92

News from Finland - UNIX and the polar bears 103

DKUUG in Paris 105

Abstracts from the Florence Technical Program107

The Florence Contest 118

From the ;login: Newsletter - Volume 11 Number 5 121

Cognito, An Expert System to Give Installation Advice for UNIX 4.3 BSD122

Access to UNIX Standards 127

Book Review - The UNIX C Shell Field Guide 129

From the ;login: Newsletter - Volume 11 Number 6 131

Personalizing the Impersonal 132

Hindsight is 20/20 140

AUUGN 1 Vol 7 No 4-5

From the ;login Newsletter - Volume 12 Number 1 141

Call for Papers - Summer 1987 USENIX Conference142

How To Write a Setuid Program 143

An Overview of the Sprite Project 150

Book Review - The C Programmer’s Handbook155

Standards 156

Letters to the Editor 158

AUUG Membership Catorgories 177

AUUG Forms 179
AUUG Annual Elections 1987 185

Nomination Form 186

Copyright © 1987. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a trademark of AT&T Bell Laboratories

Vol 7 No 4-5 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Parkville, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

Ken McDonell, President

kenj@moncsbruce.oz
Monash University, Victoria

Robert Elz, Secretary

kre@munnari.oz
University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
Softway Pty. Ltd., N.S.W.

Chris Campbell, Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

John Lions, Committee Member

johnl@elecvax.oz
University of New South Wales, N.S.W.

Tim Roper, Committee Member

timr@labtarn.oz
Labtam Limited, Victoria

Lionel Singer, Committee Member

lionel@pta.oz
Lionel Singer Group, N.S.W. ,

Next AUUG Meeting

(Temporary address is kjmcdonell@er.waterloo.cdn)
(University of Waterloo, Canada)

(This is new)
(This is new)

(This does not work)

The next meeting will be held at NSWIT on the 27th and 28th of August.
Futher details will be provided in the next issue.

AUUGN 3 Vol 7 No 4-5

AUUG General Information

Editorial
Well, judging from the thickness and the content of this issue, the AUUGN has stopped dieting and is
starting to look very healthy. Thank you to all those people who responded to my desperate pleas in the
newsgroup aus.auug, and were concerned by the thinness of the last issue took the time to produce an
article. I hope that this enthusiasm is not lost, and people will put the effort into producing a
contribution for the next issue.

Some of the papers that appear in this issue were presented at the AUUG Meeting which was held in
Adelaide recently. I considered the meeting a great success and that conference organisers should be
congratulated. They did a great job despite given very short notice. I enjoyed the proceedings
immensely and learnt a great deal.

I suggest if you have not been to AUUG Meeting before, you should plan to attend the next one being
held in Sydney. Not only are informative papers presented. It gives you the chance to put faces to
names who appear in the local newsgroups, and communicate with you using electronic mail over
ACSnet. You can also meet and talk to people who use UNIX from all over AUSTRALIA who you
would never get to see in the normal course of events. I am sure you will get as much out of this next
meeting as I did with the last meeting.

There are two important issues you should think about over the next few months. They are:-

-- AUUG Incorporation.

A postal vote will be held in the next few months.

Nominating someone for one on the postions of the AUUG Executive.

There is a form in the back of the issue.

Thank you for reading the AUUGN and if you are not a subscriber or a member, I suggest that you fill
one of the forms at the back of this issue so as not to miss out on the next issue.

A WARNING to those who are financial members that reminder notices are no longer sent out when
your membership expires. You should check the mailing label that came with this newsletter for the
expiry date. If it is highlighed you should renew your membership using a form found at the back of
the issue.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754 (This is new)

Vol 7 No 4-5 4 AUUGN

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is the 17th of April 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff -ram and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -ram, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 7 No 4-5

The Claytons Unix Programmer.

Greg Rose

Softway Pry Ltd

ABSTRACT

Since its quiet beginnings around 1970, UnixTM~" has pervaded a very
wide range of computer hardware, from small micros to very large
mainframes. During this time, there have often been conflicting statements
about the future of Unix. This paper attempts to examine the historical
forces which have moulded Unix into what it is today, and to extrapolate
from that to where Unix may be headed in the relatively near future.

The title of this paper derives from a number of things. Increasingly
(and to the good of all in the long run) Unix systems are self maintaining,
and on the other hand, programmers do not need to be labelled with their
operating system as much as before.

1. Introduction

This paper will attempt to highlight an ongoing phenomenon associated with Unix
and its derivatives, lookalikes, workalikes and emulations.

The first few years of the lifetime of Unix were spent in an environment which is
significantly different to any common commercial (or even educational or scientific)
computing environment. After the first explosive wave of Unix systems installed in
Universities, the emphasis changed, and then changed again in an attempt to meet true
commercial needs when AT&T decided that there was money to be made.

Despite this, it is only now that Unix is really on the way to achieving this goal, and
AT&T have not done all of the work.

2. Past perceptions of Unix

2.1 1970-1974: the early years.

The initial design goals of Unix were very easy to state, and bore no relationship to

UNIX is a registered trademark of AT&T.
In this paper, the word Unix is used to denote an operating system which is intended to be quite
compatible to UNIX, and the term includes, for example, XENIX (a trademark of Microsoft Corp), and
lookalikes such as Idris and HP/UX. It is the philosophy that counts.

Vol 7 No 4-5 6 AUUGN

most of the current uses of Unix based computer systems. These were the twin goals of:

a. supporting efficient program development in an interactive environment, and

b. Running games programs such as Space War.

These goals appeared in reverse order, as Ken Thompson found (while developing a
Space War game on a disused PDP-7) that the development environment utilising a batch
mode cross assembler, was not good enough. Unix was conceived to be a usable
development environment, capable of supporting itself.

The timesharing environment available then was mostly slow, hard copy terminals.
Many of these were Teletype ASR33s, much like the old telex machines, with plunger-
like keys. Any amount of typing over and above the minimum necessary was
unacceptable in this environment, as was any redundant output information. These
aspects account for the terseness of the program names and the almost total lack of
headings and formatting on the output of standard programs. (Note that the programming
approach much applauded in the book "Software Tools" by Kernighan and Plauger,
Prentice Hall, grew out of the fact that most programs produced exactly what was
required as output, without frills, and that this was largely what was needed as input to
other programs.)

This stage of the development of Unix is the part which has engendered the greatest
criticism of Unix, that of its "user unfriendliness". This was unjustified even at the time,
as the developers recognised that the environment they utilised was not necessarily one
which all people would like. In the paper which announced the existence of Unix1 this
issue was clearly addressed:

"It [Unix] offers a number of features seldom found in even larger
operating systems, including [a] system command language selectable on
a per-user basis."

2.2 1975-1980: The explosion years.

After the release of the paper mentioned above, a huge number of tertiary institutions
around the world accepted Unix as a teaching vehicle, and students began to know it.
This was the time when different versions of Unix became available, many enhancements
were added, user groups were formed, and the whole Unix scene became somewhat
"religious". In this time, there were many arguments about the user interface of Unix, and
the world seemed to divide into three classes:

a. Those who liked the standard shell and command names, and said so.

1. Dennis M Ritchie and Ken Thompson, "The UNIX Time Sharing System", Communications of the
ACM, Volume 17, Number 7 (July 1974) pp. 365-375.

AUUGN 7 Vol 7 No 4-5

bo Those who thought the standard interface to be too terse and cryptic, and said so.

Those who recognised that (for many purposes) the standard interface was too terse
and cryptic, and who knew that they could change it, but who didn’t want to
change it, and didn’t bother talking about it.

The problem caused by these groupings was that neither of the vocal groups
remembered that the interface could easily be changed, while the silent group typically
consisted of people who had no incentive to change it, as commercial uses of Unix were
still relatively rare.

2.3 1980-1986: the commercial reality years.

This period saw a number of very important developments of Unix for the
commercial world:2

a. Interactive Systems announced supported binary licences for Unix.

b. Onyx released a Z8000 based multiuser computer running Unix.

c. AT&T recognised Unix as a product, and announced System III,
System V - at commercial prices.

and then

d. The Motorola 68000 family made real big machine performance available.

e. A number of large machines were built by startup companies, running only UNIX.

f. Many machines started being shipped with menu systems for system
administration and user applications.

The situation with Unix developed into one where the name became of major
importance to the computer manufacturers, for two reasons. Firstly, for small
manufacturers, the only operating system available to them (unless they employed huge
numbers of people to create YAPOS3) was Unix. Secondly, Unix formed the only
platform for comparison of many machines, so large sales and tenders often specified its
availability, forcing even those manufacturers with proprietary operating systems to
make Unix available.

3. The current perception of Unix

There is a dichotomy in the perceptions of Unix in the commercial press. About half
of the articles (pertaining to Unix of course) state that Unix "will never make it". The
other half seem to implicitly assume that Unix "has already made it". What is the reason
for this apparent confusion?

2. I have listed these in an order that is vaguely chronological, based on my quite fallible memory; please
forgive anything out of order. Also, many other events may be just as significant, these are just some of
the ones I feel are important.

3. Yet Another Proprietary Operating System. YAPOS is a trademark of Softway Pry Ltd.

Vol 7 No 4-5 8 AUUGN

The real answer is that both are true. Unix is in control of an overwhelming number
of computers being used in office automation and accounting environments. It has
"made it" in the sense that a very large and generally happy set of end users are using it.

The contradiction arises from the fact that almost all such users have never heard of
Unix! They do not communicate to an "unfriendly" shell in terse and cryptic commands,
rather with some applications packages utilising "friendly" menus or whatever.4 So in the
sense that MS/DOS5 has "made it", and huge numbers of people with PCs know the
command syntax, Unix has not, and (hopefully) never will.

4. Needs of the computer-using community

There are a number of needs in the computer using community that are of relevance
to this discussion. These are:

a. Application software which is versatile, widely available, and good value.

b. Good interfaces for the inexperienced and non-technical user.

c. A reliable upgrade path.

d. Support in the availability of training and technical expertise.

5. How Unix will meet these needs

Unix addresses these needs very well, which accounts for the success that it does
enjoy in the commercial marketplace.

Because of the excellent program development environment, and the fact that
applications once developed enjoy a high degree of portability, there is a great range of
software available. The Unix programming environment ensures that much of this
software is of high quality and versatility. Note that these issues are mostly important to
the developers, and not the commercial users, but it is that much larger segment who
profit.

There is no longer any excuse for the commercial user to be exposed to a bad or
merely inappropriate interface. Thompson’s statement of 1974 (above) is even more
valid today. If a single integrated package is in use, it’s interface should be adequate; if
not, there are almost certainly other packages which are, and that one deserves to lose. If
the user must communicate with multiple (unintegrated) packages, a simple menu system
can be written as a front end, using shell scripts.6

4. I personally don’t believe that menus are particularly friendly, but I don’t want to get into that argument
here.

5. also a trademark of Microsoft Corp
6. As a giveaway, Appendix A presents a shell script which interprets menus stored in text files. There is

no excuse any more!

AUUGN 9 Vol 7 No 4-5

The fact that Unix is portable itself, and allows enormous amounts of software to be
made available on new hardware at quite low cost, is one of the major attractions of Unix
for computer manufacturers. This just happens to ensure the existence of an upgrade path
for the commercial user, either within the same manufacturers’ line, or outside it.

There are now many courses to teach about Unix, and many graduates from
Universities who know enough about it, to provide support at any desired level.

6. Conclusion: The Claytons Unix Programmer

Unfortunately, computer operating systems are fairly tenuous objects, especially in
the eyes of a lay person, and Unix is especially so. A more concrete example than
computer operating systems can help the description.

Imagine a customer entering a car sales showroom to buy a car. Somewhere in the
conversation, he will ask about the engine. If the salesman replies "This model has a
diesel powered steam turbine", an immediate loss of interest would probably result. On
the other hand, a response of "mumble mumble N cylinder mumble petrol mumble"
allows the conversation to continue. Why is this so?

The huge majority of car buyers are not looking for special attributes which may
cause trouble. They know that a car with an internal combustion petrol engine can be
serviced by any mechanic, and that fuel is available at a nice "user friendly" petrol pump.
Many evening colleges (at least in Sydney) give courses about how to service a car, and
how an internal combustion engine works. There is no lack of training or service, and the
interface is good.

On the other hand, most car buyers, after checking that the car has an appropriate
engine, don’t allow that thought to reach their consciousness again.

The parallel is between cars and computers, and car engines and Unix. If a potential
computer purchaser asks what operating system the computer runs at all, the answer
"Unix" will be satisfactory and soon forgotten. An answer like "YAPOS" will cause some
loss of interest. Having established that the computer runs Unix, it is then automatic that
a large range of application software is available, that good user interfaces can be
provided, that support is available, that training courses can be found.

(It also goes without saying that if the above things are not available for that
particular computer, you are dealing with a shark in the car industry sense.)

There are people who are prepared to buy cars with strange engines for their own
reasons; they might choose to buy an operating system other than Unix for their own
reasons, but they must be prepared to sacrifice the convenience. More importantly, when
the application is not a straightforward one, there may be reason to buy a "special
purpose" operating system (or engine); by definition, the special purpose applications are
a small portion of the market place, and should not be allowed to dictate trends to the rest
of the commercial users.

An average petrol station does not have a sign saying "we provide reciprocating
internal combustion engine service (all you steam turbines go away)". It probably says

Vol 7 No 4-5 10 AUUGN

"Mechanic on duty". In the near future there will be no Unix programmers, just
"Programmers on duty". These unspecialised programmers will be familiar with Unix,
MS/Dos and perhaps other systems.

They will be the Unix programmers you have when you are not having a Unix
programmer.

Appendix A - a simple menu system for Unix

The following Bourne Shell script is intended to run on just about any Unix system.

#!/bin/sh
shellmenu - interpret simple menus.

if [$# != 1]
then

echo "usage: $0 menufile" >&2
exit 1

fi

m=’basename $I 1 sed ’s/ / /g’’ --
n=’wc -i $i I sed -e ’s/^ *//’ -e ’s/ .*//’’

while true
do

tput clear; echo " Sm:\n"
sed ’s/(~ .*//’ <$i I pr -n -t
echo ’\n Enter selection: \c’
pause=false

read sel I I exit 0
case "$sel" in
01quitlQUITIexitlEXIT)

com=exit
;;

helpl HELP I \?)
echo "enter a number, or the first letter or word of the choice."
echo "To exit, type ’0’ or ’exit’."
pause=true com=loop
;;

,, ,,)

echo "Please make a selection."
pause=true com=loop
;;

[0-9] I [0-9] [0-9])
if [1 -le $sel -a $sel -le $n]
then

com=’sed-n-e ’s/.*@//’ -e "${sel}p"<$1’
else

echo "Your selection ’$sel’ is out of range."
pause=true com=loop

fi
;;

,)
com=’grep -i "$sel@" $I I sed -e ’s/.*@//’ -e lq’
if ["x$com" = x]
then

AUUGN 11 Vol 7 No 4-5

fi

esac

echo "your selection ’$sel’ could not be matched."
pause=true com=loop

case "$com" in
loop) : ;;
exit) exit 0 ;;
*) eval "$com" ;;
esac

if $pause
then

echo " [type return when ready] "
read x

fi
done

Figure 1. the shellmenu shell script.

There is one line which is System V dependent, that is the one which uses tput to clear
the screen. This can be replaced with an echo of either a hard coded sequence if the site
uses all the same terminals, or a lot of blank lines works quite well.

The other vague system dependency is in the use of the echo command itself. On
System III and beyond, the special construct "\ c" at the end of the string indicates no
trailing newline, and "\n" adds an extra newline at that point. On older systems, Xenix
and the Berkeley variants, there is a flag "-n" which must be given to suppress the
newline, and multiple echoes for extra lines. Last but not least, the flag "-±" on the
grep command causes case insensitivity on the System III descended versions, but "-y"
(y? why? I think this rivals even grep itself for crypticism) is used on Berkeley and
Xenix. Sorry about that.

The files which this command interprets are very simple to construct. They consist of
a number of lines, each of which becomes one item of the menu. Each line has two fields,
the first of which is the displayed part of the menu and the other is any single line
command for the Bourne shell. These are separated by one or more tab characters (and
the program above displays these as "0" for visibility); multiple tabs can be used to line
up the commands visually for ease of editing.

Because the command string is ’eval’ed within the script, it can pass around variables
and do things like changing directory successfully (but the name of the file should then
be an absolute pathname). In particular, the environment gives one variable a special
meaning; the shell variable pause can be set to true to make the menu wait for the
user to type a newline before clearing the screen and redisplaying the menu.

Special cases yielding help and leaving the menu are provided.

Vol 7 No 4-5 12 AUUGN

Netwark Addressing

KoRoEIz & RoJoKummerfeld
kre@munnari.oz, bob@basser.oz

Recently, we have been the recipients of several questions about naming hosts on
networks. Rather than continually repeat the answers to individuals, we decided that
some kind of broadcast explanation, in more detail than an individual answer would
ever obtain might be a good idea. So...

This is a brief(?) discussion of what’s involved in choosing a network name (a host
name). The approach is general from an ideal point of view, to choose a name on a
particular network various network particular criteria might need to be met, such as
maximum lengths, etc. Also, on many networks names ai’e assigned, rather than
chosen. On such a network, this may guide the assignor.

In this discussion of what an name is we will not be considering any of the following,
even though at some level of abstraction they may be considered to be names.

a, Routing information. A name specifies what an object is, not where it is. An
address (where an object is) needs to be obtainable from a name, and then
routing information (how to get there) needs to be able to be obtained from this
but that is very much an implementation problem, how it is achieved will
depend a lot on the particular network.

bo Directory services. A name is a precise object. The problem of how to obtain
this object given a more vague specification is the role of the directory service.
Typically a directory service will return a name.

Having eliminated those two it remains to be stated what a name is. Simply, its the
unique specification of some object in the network. That is, given a name, one precise
object can be located.

The problem of name allocation is to assign names to all objects in the network in
such a way that this condition is met.

Given only this objective, name allocation would not be difficult, serially numbering
objects would do. However, additional goals are: that the name allocated have some
human relationship with the object described (most people should have some idea what
object it represents, perhaps after an initial familiarity period), that names be relatively
easy to remember, that they not be too long, and that the named objects have some say
in how they are named. Names should also be stable, which is to say that once
assigned, they should rarely, if ever, change.

An additional goal often encountered is that the administrative load in assigning names
be reasonable.

We are going to initially discuss the familiar rfc819 style of domain mail name. That
is the general type of name that is used on ACSnet, and on coloured book networks
(as well as by the EAN X.400 network user agents). Later a brief discussion of pure

AUUGN 13 Vol 7 No 4-5

X.400 naming will be given. Other naming schemes can be invented (uucp has one)
but it does not seem fruitful to discuss those here.

An rfc822 mailbox name has two basic components, a local part, and a host part. The
local part is something that is interpreted at the address specified by the host part.
The local part of the name is often the login or account name of a user; it is not
relevant here.

The host part will also usually be used for other, non-mail naming, which makes it
even more relevant to consider this part.

The set of all available names is broken into subsets, each of those subsets is known
as a domain, and is given a name, known as a domain name and the naming scheme
is known as domain naming. Each domain is further split into sub-domains, and
these are also given names. This continues as long as the domain remains big enough
(in some undefined sense) to require it. The basic idea is to spread the administrative
load of assigning names, without forfeiting any of the other objectives. The final host
name is the concatenation of all the assigned (sub-)domain names, from the smallest to
the largest. This can be done with the result written in either order, and of course,
because it can be done, it has been done!

The UK Coloured book names, and the names used by the rest of the world differ in
the order of significance of this series of sub-domain names. For present purposes this
is not important.

The format of the host part is specified in rfc819. Basically, it comprises a series of
names, separated by dots. This implements this domain scheme - the dot (period)
serves simply as a separator between the domain names, it has no other significance.

Any naming scheme needs some authority to govern it. That is, something must
prevent two objects having the same name. With domain names, this authority is
distributed. A central authority exists only to allocate names at the highest domain
level. This authority assigns names to other, lesser authorities, which can then assign
names within their assigned domains.

It is not required that any authority be a human, anything that has the capability to
assign names without causing any ambiguity can be used. Nor is it required that the
authority designate the name to be used, in fact, in almost all cases it is far better if
the entity requesting a name suggest the one wanted. The authority need only check
that this name is not allocated, and then allow or reject it on that basis. However,
especially at the higher levels, the authority should also assure itself that the entity
requesting the address can truly claim to represent the object being specified.

Now for an example. Assume that a top level domain for Australia has been
allocated. This means that Australia has been handed a set of addresses it can
allocate. There is no requirement that the objects addressed be Australian, that they be
located in Australia, or in fact, that they have any connection with Australia at all. Its
the name space that belongs to Australia.

Vol 7 No 4-5 14 AUUGN

Now in practice, it would be unusual if a non-Australian object wanted to request a
name in the Australian namespace, but it is possible - with one caveat. That is that
there is no requirement that Australia register anyone in its namespace (many apply,
few are chosen...). Given that some objects will be registered, any criteria at all can
be applied to decide which, and what names they should be given.

In the international community, only the ISO and CCITT have any claim to having
any international control over networking, and both of those are concentrating on
X.400 (aka MOTIS), so neither has any great interest in regulating rfcS19 domain
names. However, these names exist, and will do so for some time, so someone needs
to control their allocation (or really, control allocation of the highest level of domains).
The biggest user of rfc819 and in fact, its creator in some sense, is the US Arpanet, so
the responsibility of allocating rfcS19 top level domains has been delegated by the
agreement of everyone concerned to the Arpanet Network Information Center (NIC).

They have allocated one domain to each country, fixing the ISO standard 2 letter
country abbreviation as the domain name for each country. The name for Australia is
AU. Any addresses ending ".AU" (or starting "AU." in the coloured book scheme)
are ones that have been allocated by the Australian name authority (or if not so
allocated, are invalid). This naming scheme happens to be the same one being
contemplated in the X.400 world, so "AU" will be Australia there too.

How the various countries will allocate their internal namespace, and who in each
country will be responsible for this policy cannot be decided by the Arpanet NIC - that
is left to the groups in each country who run the networks to work out for themselves.

In Australia there neither is, nor has there ever been, any network administrative
structure to claim the AU domain, yet the ability and desire to make good use of it
have existed for some time. With that in mind, it was decided to go ahead and apply
for the AU domain to be allocated, so the networks in Australia with the ability to use
the global mail system would not be held up waiting for someone to set up the right
bureaucratic infrastructure.

So, the authority for AU was delegated to Robert Elz, of the University of Melbourne.
The policy for allocating names in AU is that the authority requesting the name must
represent a substantial community in Australia. Initially, only one such community
existed, ACSnet, but as it was unlikely that would always be the case, ACSnet was not
simply handed "AU" domain, rather it was given a subdomain of it. This leaves
open the possibility that other organisations or people with some influence in the
networking area could obtain other subdomains of AU to administer.

At the current time, only one name has been approved in Australia. That one is
"OZ". This name has been given to the ACSnet administration. That is, any names
ending ".OZ.AU" (starting AU.OZ.) are names that have been allocated by ACSnet.

Here there have been many names allocated. The authority that controls this
allocation is the SunIII network code developed at the University of Sydney. The
policy in allocating names in OZ is that the object to be named must be connected to
ACSnet (using the SunIII code, or some other mechanism).

AUUGN 15 Vol 7 No 4-5

Names allocated inside OZ may be further subdivided according to the policy of the
authority the name was allocated to, and within the guidelines imposed by the SunlII
network code when it grants this authority. There are some restrictions here concerned
with the implementation of SunIII.

Now to the objective of this entire article. How does someone obtain a network
name? Well, all that’s required is to find some authority that will register you in their
domain. Any authority will do, but it must be one that is willing to register you - that
is, you must comply with the rules of that authority.

If you are going to run the SunIII network code, then things are fairly easy, you
qualify for a name within OZ, you select the one you want, tell the network code the
name you have selected, and then see if it agrees to let you use it or not (it will unless
the name exists elsewhere).

But a little more thought is required.here for the name choice to be made rationally.
First, it makes sense for an institution to obtain a name, and then subdivide that
amongst the components of the institution, rather than each component obtaining its
own name. This is just a good social policy - the less names taken from a domain,
the more are left available for future requestors. Taking more than you need is just
greed. You must also comply with the slightly baroque requirements of SunlII, which
in some instances run directly counter to the previous point.

Now let us suppose that you are not going to be running SunIII. Here we must
examine who you are a little. If you are a small site, a single host, or small
(comparatively) network, then it probably makes sense for you to register your name
inside OZ, or perhaps some other registered subdomain of AU (when there are more).

If you are a large, multi-organisational, network, then it would probably make sense to
obtain a new subdomain of AU - this provides a whole new clean namespace for you
to allocate, and you won’t be subject to any control from SunlII (remember that
subdomains of OZ must comply with all SunIII’s rules when allocating names).

Let us assume (hypothetically for a minute) that another subdomain of AU exists, lets
call it AC in order to have something concrete.

Now, if you are a site that wants to obtain a name, what do you do? Things are a
little more complex now, as instead of just taking a subdomain of OZ because that’s
all that was available, you can now pick and choose - assuming that both authorities
will accept you.

Here it simply doesn’t matter which you choose - whichever best suits your needs.
What is important is that you choose one of them, and NOT obtain names from both.
The latter is legal (if the authorities permit it) but can be very confusing.

It should not be important here which authority you choose, though in many cases one
of them will be the obvious one. Since a name specifies what you are, and not where
you are, having a name allocated by one of these authorities does not constrain which
networks you .are connected to.

Vol 7 No 4-5 16 AUUGN

That is, assuming that you obtain a name FOOBAR.AC.AU (or perhaps
AU.AC.FOOBAR) there is nothing to stop you connecting that object to ACSnet.
SunlII has a few rules that you must follow, one in particular is that you must be
internally connected to all other AC.AU (AU.AC) hosts, but that’s all.

Similarly, assuming that you have a name FOOBAR.OZ.AU (or AU.OZ.FOOBAR)
nothing is going to prevent you connecting to the network which owns the AC domain
(assuming that in fact, there is such a network).

It is the job of the various network code to route messages to the objects identified by
the various names. We believe that both systems (SUNIII, Coloured book) in use in
Australia can adequately cope with this since they use this naming form.

As an absolutely concrete example, The University of Melbourne has been allocated
MU.OZ.AU (and has also grabbed for itself a whole swag of other names in OZ.AU -
a few of which it was required to take by the SunIII rules, but many more which are
the result of simple greed).

This should be its name on all networks. There is NO need for any other names to be
allocated to that University, one is quite enough (or should be quite enough).

Now, for something a little different, lets consider the future. It is beyond doubt now
that future mail networks will be based on the CCITT X400 standard (or the
equivalent OSI MOTIS standards, that is, once they actually become equivalent).

Here things are done a little differently, though many of the principals are the same.

In the X400 system addresses are highly structured. The term Originator/Recipient
Name or ORName is used to refer to a name.

An ORName can take a number of different forms, some of which aren’t relevant in
the current environment since they contain either a Unique User Agent Identifier (a
unique code for every user on the net) or an X121 address (a terminal address for X25
or Teletex networks). The form that we will almost certainly use in the future has the
following parts:

Country Name
Administration Domain Name
Personal Name[*]
Organisation Name[*]
Organisational Unit(s)[*]
Private Domain
Name[*]
Domain Defined Attributes[*]

Country Name This is an ISO code that can either be a number or a two character
string. The code for Australia is AU.

Administration Domain Name (ADMD)
This refers to a service provider such as Telecom. It can also be a
number or printable string. We don’t know Telecom’s code yet (if

AUUGN 17 Vol 7 No 4-5

it has one).

Personal Name This is made up of the following component printable strings:
surname, given name, initials, generation qualifier.Only the
surname is required, the rest are optional.

Organisation Name, Organisational Unit(s)
These are printable strings.

Private Domain Name (PRMD)
This can be a number or a printable string. For Acsnet it would
make sense to choose oz.

Domain Defined Attributes
These are pairs of printable strings- a type string and a value
string. This part of the address can be used to convey information
that is meaningful to the destination private domain.

The first two components (Country and Admin domain) must be present in all
ORNames of this form. At least one of the components marked with [*] must be
present in an ORName.

A printable string is a string that contains only characters from a subset of ASCII
(actually International Alphabet No. 5...). The subset is:

A-Z a-z 0-9 ’0+,-./:=? and space

Notice that it doesn’t contain at-sign (@). Its also worth noting though that this
limited character set is currently subject to review, as it doesn’t contain all of the
alphabetic characters used in some European countries, and doesn’t suit the non Latin
alphabet countries at all. It is quite likely to be extended.

It is possible to design a mapping between our current form of names and X400
ORNames. This would allow a user on a "pure" X400 system to send a message into
the current WorldNet (Acsnet, Arpanet, Bitnet, Csnet etc). Steve Kille of University
College London has proposed a mapping that would be adequate. The basic idea is to
use the Domain Defined Attribute to carry an encoded form of our current names. An
example name is:

Country name
Admin Domain name
Private Domain name
Organisation
Domain Defined Attr

,taut,
"Telecom" (for example)

"SU"

bob / basser

In our current notation, this might be written

bob@ basser.su.oz.telecom.au

Or the "telecom" might be elided if it can be inferred from the rest of the name,
giving a more familiar

Vol 7 No 4-5 18 AUUGN

bob@basser.su.oz.au

There is also a reverse mapping that allows an ORName to be encoded as an Acsnet
(or other) style name. Here is an example:

/C=au/ADMD=Telecom/O=BHP/OU=Steel/PN=J.Smith/@munnari.oz

This message would be sent to munnari and then (via X400 somehow) to J Smith in
the Steel department of BHP.

These examples don’t really do justice to Steve Kille’s proposed mapping. The issues
are very complicated and his document (70 pages of it!) tries to cover all the
problems.

While this technique will be useful in the medium term it is not a very satisfactory
long term solution. In the long term we should move to X400 addresses of the form
described earlier.

Whichever mapping is used (which is to say, however names are written down), the
name allocation problem is very much as before.

At the top level are countries - the names for those are predetermined in the standard.
The designated body in each country (in Australia it will almost certainly be the
Australian Standards Association) will then allocate Administrative domains to eligible
bodies. In Australia Telecom, and perhaps OTC (maybe even AUSSAT) are likely to
be the only Administrative domains allocated. These administrative domains then
allocate Private Management Domains according to whatever policy they set, or they
can simply allocate Organisation names.

In a PRMD, that PRMD will allocate Organisation names, and the Organisation will
allocate Organisation Units, which will allocate Personal names. Domain defined
attributes will be of a form specified by the ADMD or PRMD, and will be allocated
however is appropriate to that definition.

Thus, the allocation problem is much the same, the details differ, and the notation
differs considerably, but that is not of immense consequence here. A mapping can be
defined between the two notations, and that will allow addresses allocated in either
scheme to be used in the other, so we would expect that addresses allocated now could
continue to be used well into the X400 era.

To sum up - name selection is important. It’s important that related entities have
related names, andthat these names remain stable. Changing a network name because
a department changes its name or brand of computer, or other things like that should
be discouraged at all costs. Its generally much better to have a name that was chosen
on what are now obsolete principles, than to go through the headaches involved in
altering an existing name. This should make it very clear that choosing a name should
be done correctly the first time!

Lastly, some more practical help in deciding what name you should actually choose.
In this area, its wise to bear in mind the requirements of X.400, so when the transition
occurs, names need not change if at all possible - only the technology that delivers the

AUUGN 19 Vol 7 No 4-5

mail, and the precise form of the bytes that are delivered.

You are almost certainly going to want to be registered in the Australian domain, that
will be common to rfc819 domain names, and to X.400 names. For now, we will
forget ADMD’s.

We will assume-that X.400 will allocate a PRMD of "OZ" to ACSnet, so if you are
adding a host to ACSnet, your PRMD will be "OZ", or your address will end in
".OZ.AU" (of which ACSnet uses only the .OZ).

Within the PRMD you should have a domain allocated to your organisation. The
name for this should be something fairly short, yet distinctive, and easily associated
with the organisation. For example, the University of Melbourne has "MU".
"Melbourne" would be too general, and "University-of-Melbourne" or "Melbourne-
University" too long. "Melb-Uni" would be a possibility, but "MU" seems to
suffice.

Similarly The University of Sydney has "SU", Telecom Research Labs has "TRL"
and CSIRO’s Division of Maths and Stats has "DMS".

Sometimes its hard to decide whether some fraction of an organisation should be
regarded as an organisation itself, or a subdomain of a larger organisation. Here its
probably best to look at the overall general control of the network in the organisation -
if its distributed among the units and they are reasonably large, then its appropriate
that they are each treated as an organisation for network naming purposes, so its
probably better for DMS to be a domain of its own, than a sub-domain of "CSIRO".

Within this, there will often be subdivisions of the organisation. Where they exist,
each subdivision should have its own domain to administer. The Computer Science
department at the University of Melbourne is "CS.MU.OZ.AU".

Typically this is enough levels, there is no need to add extra nodes in the tree to
match with internal organisational breakups (so, there are no domains for the School
of Mathematical Sciences, of which the Department of Computer Science is a part, nor
is there one for the Faculty of Science, of which the School of Mathematical Sciences
is a part). Making a fairly bushy domain tree makes names that are short enough for
people to remember and use.

On ACSnet, this should usually be the hierarchy for your node.

Ideally, this would be all that would be needed, individuals should simply be named
within their department. However, in practice it happens that the mail systems that
exist often require that mail be addressed to a particular host computer within the
department, and not just the department itself.

Similarly, the SunIII code requires that each host have. a private name, and most other
networks do likewise.

Also, users (and administrators) typically like to have names for their computers, it is
easier to say ."foobar is broken, stupid machine!" than "the third machine from the
left in the second row is broken...", or "the machine with serial number 12345 is

Vol 7 No 4-5 20 AUUGN

broken".

Choosing this name is largely up to individual sites, almost anything is possible. One
thing to avoid usually is naming computers after their manufacturers. Quite apart from
the fact that the manufacturer’s name is usually a trade mark, which you probably
won’t get permission to apply to your particular computer, it also means that if the
machine is upgraded to a different model, or an entirely different brand, then its name
would no longer be appropriate, even though the usage, user population, etc, is still the
same. Simply serially numbering (or lettering) hosts is one technique that works,
though it doesn’t show much imagination. Picking names that are part of some
common series (flowers, animals, actors, ...) can be a good idea.

On SunIII this name will usually be the hostname, though in some circumstances, one
of the names of the hierarchy might be a better choice if the particular computer is to
act as a gateway to the domain. The Sunlll primary domain is another thing
altogether, it must be one in your hierarchy, and that one must be chosen according to
SunIII’s routing rules. It is really a routing parameter, and shouldn’t be related to
naming at all. Unfortunately, currently it is.

If you consider your primary affiliation to be with Spearnet, then you will have to
follow their rules for name allocation, but we would expect that they will be
something rather similar to the ones for SunlII.

If you have a private internal network operating already (perhaps a DECnet, or some
other manufacturers proprietary network) then you will might want to consider that
network as a domain within your organisation. At Melbourne University, the local
DECnet is "DN.MU.OZ" -- even though there is no "DN" University Department,
and even though the network encompasses organisations that are not part of Melbourne
University. This is a good example of names being allocated by an authority other
that what might seem to be the obvious one - these organisations have names allocated
by the administrators of the DECnet, so they are in the MU domain. Its the authority
that allocates your name that supplies the upper levels of the domain string you get.

Within your private network you will, as usual, need to follow whatever rules are
applied by that network.

One final word of advice - try to avoid mixing characters that cause confusion when
seen together. A name "hell" (that is ’H’ ’.E’ ’L’ ’one’) is almost certain to cause
lots of confusion, being interpreted as almost anything but the name you chose.
However compelling the reasons for picking a name anything like this, and however
obvious it might seem to you, this type of thing is a very good one to avoid from the
start.

AUUGN 21 Vol 7 No 4-5

Small computers and UNIX.’

Ross J Hand

ABSTRACT

A description of the design of a computer system based upon the IBM AT model
as a replacement for a DEC mini computer in a university environment.

The following may be copyrighted, trademarked or otherwise tied in a legal web. I acknowledge
them all here. ACSnet, APC, ATF, AUSAM, CPM, Cyber, DEC, IBM, Intel, MSDOS, NEC, PDP,
SCO, SPSS, Venix, Xenix, Zilog and microvax.

Four areas involved in the design of the computer system will be discussed in this article.

The areas of concern are:

1 Hardware
2 Operating system software

3 Application programmes
4 User interaction and education

Introduction
The availability of low cost IBM AT compatibles has allowed a re-evaluation of the hardware

requirements for small computer systems. While most users of these small computers will use MSDOS
as the operating system software and therefore limit themselves to one user per machine there will be
users, who for economic reasons will attempt to put these machines to greater use. The move of a sec-
tion of a School of the UNSW from one off campus location, to another off campus location provided
the opportunity to advise on some aspects of a small computer system. The overall requirement was for
the replacement of existing facilities, low initial cost, no hardware maintenance contracts and self sup-
port of both hardware and software.

The users requirements where:

A Text processing facilities for the preparation of papers, questionnaires, letters and data.

B A terminal per user so that there was no queuing or hardware patching
C Access to the computer facilities on the central campus.

D Individual small machines so that persons writing thesis could have independence or a per-
sonal machine for use at home.

The major requirement of the section was self sufficiency. There would be no full time sup-
port for the system from programmers or technicians. The current staff would need to develop
sufficient skills and confidence to maintain the system themselves. One solution would be to add
to the existing number of MSDOS computers. Access to the cenl~al campus was actually access
to a machine capable of running SPSS. SPSS is a large statistical package and had recently
become available as a programme for MSDOS machines. The section could contain up to sixteen

UNIX is a trademark of Bell Laboratories.

Vol 7 No 4-5 22 AUUGN

staff so to meet the requirement of a one terminal per user an additional 10 machines would have
to purchased. These machines would have to be limited to floppy disk based machines without
printers to keep the cost within budget. The advantage would be a large software base, (including
SPSS) reliable low maintenance hardware and a little need for local software and administrative
expertise. The system could be purchased piecemeal as requirements dictated. It would be a con-
servative solution, but safe from criticism.

Another solution would be the purchase of a single multiuser computer and a number of ter-
minals. This solution would be more difficult to implement. It would involve the integration of
existing single user hardware and software, increased level of skills by some of the users, the need
for an administrator to cope with the increased complexity of the operating system and connec-
tions to the central campus. The long term benefits of a multiuser system where considered to
outweighed the short term problems.

Hardware.

The large number of machines available at very low cost based upon the Intel sixteen bit
microprocessors (types 8088, 8086, 80186, 80286 and 80386) makes them attractive as the basis
for a computer system. Even though transportable operating system and application software is
making the choice of central processor unit (CPU) less important, certain CPU types are favoured
by manufacturers of mass produce computer hardware. There is little use of Zilog Z8000 CPU or
National Semiconductor NS32016/NS32032 in mass produced machines and so machines of this
type where not considered. The popular CPU types are the Intel and Motorola. The Intel CPUs
are found in vast numbers in single user MSDOS machines. The Motorola 68000 and it’s deriva-
tives, are found in specialise graphics oriented single user machines and in multiuser machines
most commonly using the Unix operating system software. The choice of a single user or mul-
tiuser system dictates the hardware for that computer system. This polarisation of the massed pro-
duced market has led to some misconceptions. One of the most widely held misconceptions was
the ability of the Intel CPUs. IBM adopted a low performance implementation of the first Intel
sixteen bit CPUs as their standard for single user operation. This may have been to protect their
large multiuser machine base. The result, for what ever reason was to impress upon the buying
public the single user, single process nature of Intels CPUs. Certainly the use of the eight bit bus
version of the sixteen bit CPU, and at a lower clock speed than was possible created a hardware
precedence that other manufacturers found difficult to ignore. A very small number of manufac-
turers had the marketing power to produce machine based upon the Intel CPUs which where not
single user, single process. The majority simple produced imitations or clones of the original low
performance IBM design relying upon low cost to attract buyers.

The introduction of a the IBM AT computer, with large memory capacity, high CPU perfor-
mance and hard disk secondary storage as standard did not change the computer buyers attitude.
Although there are many implementations of the Unix operating system available for both the
IBM AT and the early PC computers they have not been as popular as predicted. The vast major-
ity of these machines still use MSDOS, a single user, single process operating system. Machines
of the IBM AT type are usually considered inadequate when a multiuser hardware is required.
The popular choice would have been equipment produced by Digital Equipment Corporation
(DEC) from their LSI or microvax range or from the numerous manufacturers using the Motorola
CPUs. The use of DEC computers has been popular within universities but the cost of hardware
maintenance and the high cost of peripheral equipment makes them less attractive. Small depart-
ments with limited recurrent funds cannot afford hardware maintenance contracts and their is a
lack of technical expertise for local repair. Skills in programming are more generally sought than
hardware repair skills.

The most suitable hardware is low in initial cost and sufficiently massed produced to be
treated as expendable. The IBM AT design meets these conditions. The many clones provide
competition among manufacturers which has driven down the initial purchase price. Hardware
maintenance contracts are not needed because of this low price and also because of the numerous
suppliers of peripherals for this design. Repair policy has become one of replacement of defective

AUUGN 23 Vol 7 No 4-5

sub assembly.

The decision was made to use an AT design as the basis for the system. The hardware used
was an IBM AT equivalent design by NEC. To the basic machine was added a Maths co-
processor (80287), a memory board containing 2 Megabytes of memory (expandable to 3 Mega-
bytes if required) and a microprocessor controlled serial port card. The Maths co-processor and
memory card where available from NEC as standard optional items. The extra serial ports where
not and when questioned about this the reply was that the two serial ports provided in the basic
unit would be satisfactory for most users applications. NEC sold their IBM AT equivalent with
MSDOS, no multiuser operating system was available from them. This may change as more of
these machines are used in a multiuser role. Companies like NEC may provide Unix software sup-
port as a matter of policy.

The choice of the serial port card was the main problem of the hardware design. NEC had
no such card and the majority of peripheral suppliers for the AT design could not supply from
stock. The most popular expansion card for serial ports consisted of an extension of the standard
serial port design to four, eight or sixteen ports. These cards required operating system software
for character transmission and reception, thus placing the central CPU under considerable load if
many terminals where in active use. They where also very expensive given there complexity,
averaging about 20% of the basic computer hardware cost. Alternatives consisted of locally
designed and manufactured cards which contain microprocessors to relieve the central CPU of
some of the software task involved in serial communication. These are sometimes referred to as
intelligent serial cards. Three local manufacturers provided intelligent serial cards for evaluation.
The problem with intelligent serial cards was one of integration. The Unix operating system
software has to be modified to accept these new devices. All three manufacturers who provided
intelligent serial cards provided this integration. This support from the manufacturers, plus the
facilities provided by the Unix software made this task less difficult than expected. All three
serial cards where considered adequate. All three cards caused the system to crash, and all where
consequently improved. Reliability finally decided the card which was used. The high cost of
this one component and the lack of choice should change as more manufacturers produce serial
expansion cards. This will continue to be the weakest component in the system until then.

This then was the hardware basis for the system. A NEC APC IV with one 40 Megabyte
hard disk, a 1.2 Megabyte floppy disk, 1 parallel printer interface and 10 serial ports. The future
expansion would include another 8 serial ports. Existing MSDOS machines would used as termi-
nals or as stand alone machines. To provide for external communications two 2400/1200/300 auto
answer, auto dial modems were added. This last item proved to be the most unreliable component
of the system, requiring more attention than was anticipated. The modems function was critical to
the success of the system but the supplier, having oriented his product to the single user market,
had little ability to solve the problems that arose, when his product was used in a network role.

Operating system software
The decision to use the hardware in a multiuser role dictated the choice of operating system

software. In reality the choice of hardware and operating system software was made concurrently.
It was not an objective decision to use Unix although sound reasons for its use do exist. An
important reason is the very nature of computing hardware itself. We have available more power-
ful hardware every year. The limitation of one task and one user per machine is harder to justify
as the hardware improves. If users are exposed to the advanced concepts and procedures available
through complicated operating system software like Unix the transition is a gradual process. Net-
working of machines is also important in this education of users. The operating system software
must be capable of supporting a sophisticated network, at both the Local Area Network (LAN)
and further. Some solutions to networking problems exist in MSDOS but they lack enough gen-
erality to allow communication from the same building, to the same city and to international
access. Fortunately Unix has such a network in ACSnet and as an added bonus was free for
university sites.

Vol 7 No 4-5 24 AUUGN

There is also the little understood problem, among Unix users, of the problems of sharing
peripherals. Spooling programmes for printing are an accepted feature of multiuser operating sys-
tem software. With a large number of single user machines the printing problem is solved by hav-
ing one printer per machine or by having a central printing machine and using a LAN or floppy
disks for file transfer to that machine. Both solutions are expensive or cumbersome.

There are at least three Unix software products that are available for the AT design. These
are Venix V, Xenix V and Microport SV/AT. All three are validated System V implementations
of Unix from ATT. All three are binary incompatible with each other and all three have strong
and weak areas. The most popular has been Xenix V from SCO/Microsoft. It’s advantages are
reasonable support in this country, a version for the IBM PC as well as the AT, a large range of
user programmes from both SCO/Microsoft and third party suppliers and it is a fairly stable pro-
duct. It’s disadvantages are a high cost, it’s mixture of Unix System III and Unix System V and
it’s closed nature. It is marketed by Microsoft (of MSDOS fame) as the multiuser version of
MSDOS and will remain, given the source code pricing scale, a closed box in this country forever.
The other major contender, Microport SV/AT has more potential, especially in a university
environment. It was produced with very little change from the original port of System V for the
Intel 80286, by some of the software engineers who did the port. It’s disadvantages are that it is a
less refined product, has virtually no support in this country and at the present has only a few user
programmes available. It’s advantages are low cost, standardisation with other Unix System V
implementations and the potential to be available at very low cost at the binary level to universi-
ties. There may also be complete source code available to universities currently holding source
licences to Intel’s Unix System V. This would have advantages for both university and commer-
cial users in this country. To those who would cry ’train spotter’ I would emphasis the generally
poor support that binary programmes of any type have in this country. Past experience has shown
that simple software faults can be fixed if the source is available and defy repair if source is not.
The holding of source for all key programmes is, I argue a necessity not a luxury. The Unix
university community have grown accustom to the attitude of fix it now and report it later. The
trend towards binary only support in this country of key software like Unix weakens our ability to
do even minor software maintenance. I do not advocate the holding of source at every site.
Those days are gone. Uniformity of systems demands less access to source. Reliable and effi-
cient maintenance requires either a central, local holding of source code or an extremely efficient
and responsive contact with the holders of the source where ever they may be. My experience
would indicate the latter currently does not exist, except under expensive software maintenance
contracts. The possibility of better long term support made Microport SV/AT the best choice.

Application software.

The largest single use for the system was text processing. Microport SV/AT has nroff, troff
and the new device independent troff (ditroff) as standard software packages. The line editor ’ed’
and the screen editor ’vi’ were also available. The users had expressed interest in continuing the
use of an enhanced version of ’ed’ called ’e’ and ’roff’ which is a simpler version of nroff. Both
of these programmes had been available on CPM, MSDOS and finally Unix machines in the users
previous work area. Since roff was assembler based an alternative was sought. A public domain
programme called proff (portable roff) was found. It exceeded the command set of roff and had
many of the features of nroff. It also proved extremely portable, and was compiled under both
Unix and MSDOS. The local enhanced editor ’e’ was also compiled under Microport SV/AT after
minor changes to iocfl system calls. Local plotting software recompiled without changes. This
left only ACSnet software and some personal software to transport. After defining the system V
flag and undefining the AUSAM flags the standard UNSW source of ACSnet compiled within a
few hours. A call programme for the modem was installed and with very few software problems,
most of them operator induced, the system became a working ACSnet node. A previous attempt
to do this using Xenix had required a special version of ACSnet that had been extensively modi-
fied.

The standard mail programmes supplied under Microport SV/AT (mail and mailx) where
supplemented by a local mailer which recognised network addresses and the network aspect ot the

AUUGN 25 Vol 7 No 4-5

system was. operational. To provide for access to the central campus Cyber mainframe and it’s
SPSS software the UNSW ’submit’ programme, after minor changes to functions accessing pass-
word structures was compiled and tested. Other local programmes written in C and awk where
compiled and tested. No serious problem was found with any of this software. Serious hardware
problems with the modems spoiled the success of the installation, but where eventually solved by
replacement. The Kermit programmes were installed on the Unix and MSDOS machines. This
allowed the MSDOS machines to be used as terminal emulators and allowed for files under
MSDOS to be sent to Unix for printing, backup or as input data to SPSS at the central campus
computer. The key decision here was that the most used programmes (editing and text processing)
would be the same on both Unix and MSDOS.

During this initial period several improvements and shortcomings were noticed in the Micro-
port SV/AT software. Some of the differences from Level 7 Unix were:

1 a device driver for the serial ports that allow one modem to be used for networking to
other machines and also allowed logins. Internal locking in the device driver
prevented interference with each other.

2 The line printer programmes, although appearing at first to be unnecessarily compli-
cated, allowed for installation of new printers with varying requirements without the
need for programme source. The user has only two programmes to learn as in most
Unix systems. Even though there are more programmes and options for system
administrators, few problems have arisen. The print spooler programme has no way of
rejecting large print jobs and will require modification to allow recording of paper
usage. These features are available under AUSAM systems and are missed. Spooling
binary files leads to wasted paper and the annoyance of other users.

3 The need for source of the getty programme has been eliminated by the gettydefs file.
This text file allows for reconfiguration of terminal parameters. Unfortunately there is
no method of determining terminal type in this file and there was no equivalent of the
programme ’tset’ which is available under Xenix.

4 The ’inittab’ file, which controls the action of ’init’, ’startup’ and ’shutdown’ pro-
grammes is certainly a departure from the simple approach of the level 7 ’init’. It’s
benefit or otherwise has yet to be determined. One serious problem was the default
inittab setting the machine into multiuser state on startup. This can be seen as a secu-
rity measure, since most small computers will not have a secure room of their own. It
can caused problems if, for any one of a number of reasons the system supervisor
could not logon as root. The inittab file can be easily changed to allow a single user
mode albeit with reduce security.

5 There was no online manual available. The manual command ’man’ existed but the
manual directories are empty. This was tree of all Unix systems encountered for these
machines. Possible the size (approximately 2 Megabytes) is considered too large for
the small disks of these machines. With secondary disk storage decreasing in cost the
inclusion of an online manual becomes more viable. The one copy of the printed
manual becomes a valuable item, much sought after by the beginner users.

6 No disk usage accounting programmes are provided even though they are documented
in the printed manual.

7 Some minor programmes would not run and usually dumped core. They are not sig-
nificant enough to hinder the system’s use but are an indication of a lack of refine-
ment of the current command set. They should either be fixed or removed from the
next release.

User interaction and education.

This is a key area of the system. It creates problems that extend beyond the purely techni-
cal because it involves interaction between users at different levels of computing skills. Some
users will have computer skills from their use of MSDOS and CPM. Others will have skills from

Vol 7 No 4-5 26 AUUGN

mainframe computer use. Neither area will map directly to this small but multiuser environment.
A multiuser system usually requires specialist support staff. The small size of this system cannot
justify dedicated support staff, so the support will come from the users themselves. A number of
users sharing the critical functions associated with the super user account will remove the ’key-
man’ problem, allowing the system to be maintain as staff come and go. At first there will be
more tasks for the super user to perform especially if there is only one such person. Therefore
users keen to provide time and effort for administration should be encouraged and trained. The
extent that users participate in the traditional role of the super user is yet to be determined. The
support will have to come from within and the traditional model for multiuser systems will require
change. If the hardware, operating system software and application software remain stable and
reliable then the success may depend upon the users attitude and support.

Conclusions.
The domination of Unix on personal computers, as predicted at an AUUGN meeting in

1984, has not occurred. There may have been valid reasons for this when the standard offering
was an underpowered, small capacity machine and the few Unix implementations available for
these machines cost nearly as much as the machine itself. This situation has now changed. The
advent of the AT design, it’s low cost and the low cost and reasonable range of Unix products
available for this design give the designer of a personal or small multiuser Unix system many
choices. It is now up to the users to accept that change is possible and make it.

AUUGN 27 Vol 7 No 4-5

Benchmarking Visual Editors

Albert Nymeyer
University of Newcastle

In a typical academic multiuser environment computer users spend most of their
logged-in time using a screen editor. During prime time therefore, the performance of
the screen editor is a major factor in the overall performance of the system. The standard
screen editor at most UNIX sites is vi. At our site however, all first year computer
science and mathematics students use a more restrictive screen editor called sced (SCreen
EDitor), originally written by Richard Miller at the University of Wollongong. Like vi,
sced uses the termcap database, although not as extensively. Ed was also included in this
benchmark for comparison purposes. Both vi and sced were trivially modified to read
from command files. This of course means that in this benchmark the CPU time needed
to handle interrupts from terminal input will not be a factor. A "typical" sequence of edit
instructions were placed in a command file for each of the three editors. Each editor was
then run, reading from its own command file, for alternately 1, 2, 4, 6, 8 and so on
concurrent users, one per terminal (with no other users logged on). Note that "real" users
were used to start the edit scripts on each of the terminals (my thanks to those who gave
of their time).

The test was carried out on our main computer, a Gould 9005 (8mb memory), and
on a Perkin-Elmer 3220 (lmb memory). The Gould runs 4.2BSD, the Perkin-Elmer runs
Level 7. We simulated up to 22 users on the Gould, and up to 12 users on the Perkin-
Elmer. The benchmark was run a number of times on the Perkin-Elmer. We tried
different baud rates, and different terminals. Two kinds of terminals were used on the
Perkin-Elmer, Kimtron KT7 terminals and Ampex Dialogue 30 terminals. Only Kimtron
terminals were used on the Gould. The Kimtron terminals are "clever" in the sense that
they have insert and delete capabilities, reverse scroll and many other features to speed
up screen IO. The Ampex terminals have virtually no features, apart from being curser
addressible.

In designing an edit script for each of the three editors, it is very easy to favour one.
Ed, for example, being a line editor tends to do very little terminal IO. Scripts of similar
content were written for each of the editors. Each was designed to run for 40 seconds
real time on the Gould, and each included a liberal number of screen redraws (even ed),
something that first year students are prone to do. The same edit scripts were used on
both machines.

Vol 7 No 4-5 28 AUUGN

